Q	Question		Expected Answer	Mark	Additional Guidance
1	(a)		Perpendicular out of plane of paper	B1	Allow: 'out of paper' Not: 'up the paper'
	(b)		$\frac{mv^2}{R} = BQv$	M1	Allow: Use of <i>r</i> instead of <i>R</i> and <i>e</i> instead of Q
			hence $v = \frac{BQR}{m}$	A0	
	(c)		speed = $\frac{2\pi \times 0.18}{2.0 \times 10^{-8}}$ or 5.66 × 10 ⁷ (m s ⁻¹)	C1	
			$5.66 \times 10^7 = \frac{B \times 1.60 \times 10^{-10} \times 0.18}{1.67 \times 10^{-27}}$ (Any subject)	C1	Allow : ecf for incorrect value for speed v
			B = 3.28 (T)	A1	Alternative :
					$t = \left(\frac{2\pi R}{v}\right) = \frac{2\pi m}{BQ} $ C1
					$B = \frac{2\pi \times 1.67 \times 10^{-27}}{2.0 \times 10^{-8} \times 1.60 \times 10^{-19}} $ C1
					<i>B</i> = 3.28 (T) A1
	(d)		The force / acceleration is perpendicular to the motion / velocity	B1	Allow: 'speed' instead of 'velocity'
			No work is done	B1	
			Total	7	

Que	Question		Expected Answers	Marks	Additional guidance
2	(a)		(Electric field strength is the) force per (unit positive) charge	B1	Allow: $E = F / Q$, <i>F</i> is the force on a (positive) charge Q
	(b)		Parallel and equally spaced lines at right angles to plates	B1	
			Correct <u>upward</u> direction of field shown on at least one field line	B1	
	(c)	(i)	An arrow vertically downwards at P	B1	
		(ii)	$E = \frac{3400}{0.050} \text{ or } E = 6.8 \times 10^4 \text{ (V m}^{-1)}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^4 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text{ or } a = \frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}}$ acceleration = 1.19 × 10 ¹⁶ (m s ⁻²) or 1.2 × 10 ¹⁶ (m s ⁻²)	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $E = \frac{3400}{0.050 \times 10^{-2}} \text{or} E = 6.8 \times 10^{6} \text{ (V m}^{-1}) \text{C1}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \qquad \text{C1}$ $\text{acceleration} = 1.19 \times 10^{18} \text{ (m s}^{-2}) \qquad \text{A0}$
		(iii)	$t = \frac{0.04}{4.0 \times 10^7}$ time = 1.0 × 10 ⁻⁹ (s)	B1	Allow: 1 × 10 ⁻⁹ (s) or 10 ⁻⁹ (s)
		(iv)	initial vertical velocity = 0, final vertical velocity = at vertical velocity = $1.2 \times 10^{16} \times 1.0 \times 10^{-9}$ (Allow: $1 \times 10^{16} \times 1.0 \times 10^{-9}$) vertical velocity = 1.2×10^7 (m s ⁻¹)	M1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below vertical velocity = $1.2 \times 10^{18} \times 1.0 \times 10^{-9}$ M1 vertical velocity = 1.2×10^9 (m s ⁻¹)A0

Question	Expected Answers	Marks	Additional guidance
(v)	$v^{2} = (4.0 \times 10^{7})^{2} + (1.2 \times 10^{7})^{2}$	C1	Possible ecf from (iv)
	velocity = 4.2×10^7 (m s ⁻¹)	A1	
	Or		
	$v^{2} = (4.0 \times 10^{7})^{2} + (1 \times 10^{7})^{2}$	C1	
	velocity = 4.1×10^7 (m s ⁻¹)	A1	
(vi)	$KE = \frac{1}{2} mv^2$ $KE = 0.5 \times 0.11 \times 10^{-31} \times (4.2 \times 10^{7})^2$	C1	Possible ecf from (v)
	kinetic energy = 8.04×10^{-16} (J) or 8.0×10^{-16} (J)	A1	Allow: 1 sf answer if the answer comes out as 8.0×10^{-16} (J)
(vii)	Graph starts at non-zero value for E_k	B1	
	Between 0 and 0.08 (m) the graph has increasing gradient	B1	
	Horizontal line after 0.080 (m)	B1	Note: The E_k value for the horizontal line > E_k value at $x = 0$
	Total	15	